第52章 数学城(4)-《660号生物学家》


    第(3/3)页

    4若a    为x的子集并满足:    x属于    a,且若a    属于a,则    f(a)亦属于a,则a    =x.

    该公理与由皮阿罗公理引出的关于自然数集合的基本假设:

    1°    p(自然数集)不是空集;2°    p到p内存在a→a直接后继元素的一一映射;

    3°后继元素映射像的集合是p的真子集;

    4°若p任意子集既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与p重合.

    这四个假设能用来论证许多平时常见又不知其来源的定理!

    例如:其中第四个假设即为应用极其广泛的归纳法第一原理(数学归纳法)的理论依据。

    (摘自《百度百科》)

    (本章完)


    第(3/3)页