第一一五章 软件-《永不下车》
第(2/3)页
在软件工程中,人的智慧,究竟怎样发挥独特的作用呢,一方面是分析需求,提出要解决的问题,另一方面则是对给定的问题,给出解决的方案。
与普通人的认识相反,提出问题,往往比解决问题更困难。
“认识,分析与改造客观世界”,人的一切活动,显然也包括需要用计算机来进行的活动,总可以归结于此,对特定的问题,无数前人的智慧已经找到了解法,那么这些解法,稍加变换,应用到类似问题的解决上,这种事就并非不能用AI来完成。
与此相比,从前述的“认识,分析与改造”过程中,提炼出新的问题,并独创性的给出解决方案,才更加困难。
人工智能的前沿动向,坦率的讲,方然并不甚了了,但是他也知道,目前的研究热点集中在所谓“仿生”,从“人工神经网络”到“学习体系”的诸多分支,都试图模仿人脑的学习和演化过程,也就是用庞大而复杂的电路,通过自组织、混沌演化的方式,模仿人的智力获取与提升过程。
但对于AIASG,原则上,并不需要这些高深的架构才能实现。
计算机网络中的软件,浩如烟海,真正归纳起来的种类却并不多,绝大多数软件要应付的问题,性质都彼此雷同,尤其在核心网与服务器上运行的后端程序,对接的都是其他计算机,几乎没有人的因素。
这样的软件,一言蔽之,面对的问题、和解决的算法,都具有高度的规律性。
“国际商用机器”公司的AIASG系统,具备极高的复杂度,依托于巨型计算机的100PFlops级(每秒一万亿亿次)算力,对给定的系统要求,可以自动生成、部署与维护特定的软件系统。
这且不算,按方然查到的资料,这AIASG分明已演化到了2.0版本,在生成软件的过程中,几乎完全跳过了“编程”这一环节。
想一想也是,编程,程序设计语言,这些东西都是人才会用到。
软件自动生成软件,整个过程,完全在计算机系统和网络中进行,摆脱了繁琐而低效的人机界面,软件中的指令,自然也不必再仰赖“程序设计语言”这种人与计算机的交互工具,即,跳过了“编译”、“解释”环节,而从算法直接生成机器码。
同样是“制造”软件,AI的做法,和人大不一样,这引发了方然的高度关注。
第(2/3)页