第七十一幕.莱纳的数学教室(下)-《拜见校长大人》


    第(2/3)页

    如今数学成果的进步大多还仰仗于现实中遇到了难以解决的问题,人们才会转头去寻求数学的帮助。

    第二点,也是最重要的一点,那就是数学的发展无法获得世界的反馈。

    即便莱纳提出了极坐标体系,但世界的反馈几乎不存在,一千八百年前泰勒斯.阿纳克希提出了三角形的阿纳克希定理,这重大发现却完全得不到世界的反馈,一度让他以为自己弄错了。

    艾伯顿阁下创立的微积分也没有对他构筑法术模型和收获学生的怨念之外产生任何帮助,也正因此,直到现在,在法师的派系中也并没有专门研究数学的一派,更没有数学家,研究者大多分布在法则系与元素系之中,专注于用数学知识优化法阵与法术模型,更倾向于应用数学。

    这个世界的学术体系之所以蓬勃发展,人们之所以对真理求贤若渴,很大一部分原因便是对世界真实的探索能够获得反馈,获取力量,而看起来“一无是处”的数学,自然就无人问津了。

    “这太奇妙了。”

    丹娜小声说道,倘若以莱纳得出的公式,即便是她也能快速得到魔力通道的轨迹方程,她在今天之前,从来没有意识到数学竟然有这种奇妙的力量。

    克莱尔陷入沉思,她想了想,才举起手,提问道。

    “可这只能解释抛物线的轨迹,法术模型里还有更多更复杂的曲线,比如椭圆和双曲线,这些该怎么办?”

    “这就是问题所在。”

    莱纳微微一笑,接着在黑板上画出一个椭圆,建立极坐标,开始推演。

    “椭圆的定义是平面上到两个定点的距离等于一个常数,并且大于两个定点之间距离的点的集合,同样存在着准线与焦点,定义可以转化为平面上到定点的距离与到准线的距离的比值为常数的点的集合,以同抛物线类似的方法带入......”

    莱纳的板书很规整,简单明了,丹娜也能迅速理解。

    最终,椭圆在引入极坐标之后得到了一个公式r=E/(1-e*cosθ),E=b^2/a,e=c/a,a是椭圆的长轴的一般,而b则是短轴的一半,而c则是两个焦点之间的距离。

    “这两个公式,很像。”
    第(2/3)页