第(1/3)页 陈诺站了起来。 雷鸣般的掌声在浙大紫金港校区体育馆内响起。 已经开过很多次学术报告会,规模都比这个大,陈诺从最初的雏鸟变成了现在的老鸟。 步履从容、脸色淡定的走上舞台。 “现在由我给大家讲解霍奇猜想的论证过程!” 陈诺直接开场。 “霍奇猜想,用通俗的语言来表述,就是任何一个形状的集合图形,只要你能想出来,都可以用一堆简单的集合图形拼成!” “我们先从歧管问题开始讲,什么叫歧管?可以构造成无数多个两两相连的区域,这个区域就是歧管,我们假设这个歧管是可以拉伸和弯曲的……” “一根管子标记为1,另一根标记为2,我们将他们连接组合,可以形成圆环、丁字形……到最后就会形成多个维度,这是不是就是复杂的几何图形?” …… 陈诺从霍奇的本质开始讲起,然后从歧管、hodge循环、四色定理,再到与数论的联系、与哥猜联系、与费马定理的联系等等。 每一种之间的联系逻辑都让现场的数学学者为之着迷和恍然大悟。 此刻的直播间的中也有近千万人观看,但与以往陈诺的直播有很大区别,直播间很是安静,没有人评论。 因为霍奇猜想这玩意单单是概念都让普通人懵逼,更别提表述的内容了。 “综上所述,霍奇猜想是成绩,即在非奇异复射影代数簇上,任一霍奇类是代数闭链类的有理线性组合。” 一直到了下午四点的时候,陈诺在白板上写下了结论。 除了中午吃饭一个小时,陈诺整整讲了六个小时的时间,舞台上,依次摆开了二十多面白板。 好一会儿,体育馆内才响起热烈的掌声。 “诸位有问题可以提出来,我负责解答!” 陈诺拿着白板笔,静静的看着台下的数学学者们。 “陈教授,如果按照您的这个思路,是不是意味着如果霍奇猜想对于度数p的霍奇类成立,其中p射影代数簇的维数,那么对于度数为2n-p的霍奇类,霍奇猜想也成立的?” “是的,大家注意看论文的第27页,我表述的很准确了……” 第(1/3)页